viernes, 31 de octubre de 2008

Alimentación y salud




Hoy día, la alimentación es un tema que suscita polémicas y que se encuentra en boca de todos. Los espectaculares avances que han experimentado las ciencias de la alimentación y de la nutrición en las últimas décadas revelan la importancia que tiene llevar a cabo una alimentación adecuada como una de las mejores vías de promoción de la salud y del bienestar físico y emocional.
El descubrimiento de los nutrientes y las funciones que desempeñan dentro de nuestro organismo nos ha permitido conocer perfectamente muchas de las propiedades de los alimentos que hasta hace relativamente pocos años se intuían o formaban parte de la sabiduría popular.
Los avances científicos nos introducen a fondo en el mundo de la alimentación y en la relación que los hábitos alimentarios mantienen con la salud. Cada estudio, cada investigación, nos reafirma en que la idea de que la dieta más adecuada es aquella que tiene en cuenta todas las condiciones que nos caracterizan como personas educadas en una cultura determinada, con hábitos alimenticios concretos, gustos, estado de salud, costumbres e ideales, actividad física y estilos de vida diferentes.
Por tanto, no existe una dieta ideal que sirva para todo el mundo, pero sí un criterio universal en cuanto al tipo de alimentos que deben consumirse dentro de la dieta cotidiana, lo que por un lado garantiza que se cubren las necesidades energéticas y nutritivas de la totalidad de las personas que componen una población sana, y por otro, colabora en la prevención de ciertas alteraciones y enfermedades relacionadas con desequilibrios alimentarios. Una alimentación correcta, variada y completa, una dieta equilibrada cuyo modelo más reconocido es la dieta mediterránea, permite por un lado que nuestro cuerpo funcione con normalidad (que cubra nuestras necesidades biológicas básicas -necesitamos comer para poder vivir-) y por otro, previene o al menos reduce el riesgo de padecer ciertas alteraciones o enfermedades a corto y largo plazo. Basta con recordar el impacto que tienen en nuestra sociedad las llamadas "enfermedades de la civilización": hipertensión, obesidad, diabetes, enfermedades cardiovasculares, trastornos de la conducta alimentaría e incluso ciertos tipos de cáncer se relacionan con una alimentación desequilibrada. No es, normalmente, una relación directa de causa-efecto, pero sí supone uno de los factores que contribuye a aumentar el riesgo de aparición y desarrollo de dichas enfermedades. Las líneas actuales de investigación se centran ya no sólo en el consumo de energía y nutrientes (proteínas, grasas e hidratos de carbono, vitaminas, minerales y agua), sino también en otros componentes no nutritivos de los alimentos que (se ha comprobado en la experimentación y en estudios científicos de laboratorio) se comportan como elementos protectores frente a estas y otras enfermedades; hablamos concretamente de la fibra y de los antioxidantes naturales, presentes fundamentalmente en los vegetales

Estímulos del hambre


¿Por qué nos da hambre?

La sensación del hambre está controlada por dos centrales operativas localizadas en el cerebro.
"Centro del hambre" en el hipotálamo central y "Centro de la saciedad" en el hipotálamo medial
El centro del hambre emite una señal continua a la corteza cerebral para solicitar la obtención de alimento, esta actividad va de la mano con el instinto de supervivencia. Su funcionamiento recibe la influencia de mecanismos autónomos como concentraciones gástricas, hipoglucemia, disminución de las reservas energéticas y de mecanismos voluntarios como el apetito, hábitos alimenticios y horarios.
La activación de este mecanismo, determina una serie de reacciones inconscientes como la salivación, mayor percepción de los olores, irritabilidad y otras voluntarias como el impulso de obtener alimentos.Cuando comemos una cierta cantidad de alimento, el centro de saciedad se activa debido a la dilatación de las paredes del estómago y la elevación del nivel de azúcar en la sangre.
Este mecanismo funciona a la perfección en los animales, pero en el caso del hombre las cosas se complican, paralelamente al estímulo del hambre llegan a la corteza cerebral los sentidos del gusto y del olfato que nos permiten escoger entre un tipo de alimento y otro, y anulan con frecuencia los mensajes de saciedad. Por esta razón frente a un alimento que nos gusta solemos comer en exceso.

Piramide Alimenticia


La pirámide alimentaria es una guía visual que se propone para elaborar una dieta omnívora equilibrada. Este recurso gráfico se diseña con el fin de que la población siga unos objetivos dietéticos que propone una organización o una sociedad experta en materia de salud. Para su interpretación se entiende que los alimentos dispuestos en la cima o vértice superior son los que deben consumirse en menor cantidad y los que están cerca de la base son los que se deben consumir con mayor frecuencia y en cantidades mayores.

miércoles, 29 de octubre de 2008

Química de la vida


Átomos de la vida


Bioelementos


Se llaman elementos químicos esenciales o bioelementos a una serie de elemento químicos que se consideran esenciales para la vida o para la subsistencia de organismos determinados. Para que un elemento se considere esencial, este debe cumplir cuatro condiciones:
La ingesta insuficiente del elemento provoca deficiencias funcionales, reversibles si el elemento vuelve a estar en las concentraciones adecuadas.
Sin el elemento, el organismo no crece ni completa su ciclo vital.
El elemento influye directamente en el organismo y está involucrado en sus procesos metabólicos.
El efecto de dicho elemento no puede ser reemplazado por ningún otro elemento.


Clasificación


La mayoría son elementos ligeros. Generalmente se clasifican según su abundancia en macroelementos, elementos traza y ultratraza. Los elementos traza y ultratraza son denominados oligoelementos. En la siguiente lista se muestran los bioelementos presentes en el ser humano ordenados según su abundancia.[]
Macrolementos o Elementos abundantes: oxígeno, carbono, hidrógeno, nitrógeno, calcio, fósforo, potasio, azufre, sodio, cloro, hierro
Elementos Traza : flúor, zinc, cobre, silicio, vanadio, estaño, selenio, manganeso, yodo, níquel, molibdeno, cromo y cobalto
Elementos Ultratraza:[] Son aquellos elementos que se requieren en una dosis menor a 1mg por día. La esencialidad de dichos elementos no esta demostrada, excepto para el yodo y el molibdeno.
No todos los seres vivos tienen la misma proporción de elementos esenciales, por ejemplo el wolframio es un elemento químico esencial para algunos seres vivos. En la siguiente tabla periódica se resaltan los elementos esenciales reconocidos, así como algunos que podrían ser considerados, como el litio, cadmio y arsénico

Tabla y Bioelementos


H
H
Li
Be
B
N
O
F
Ne
Na
Mg

Al
Si
P
S
Cl
Ar
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
Cs
Ba
La
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
Fr
Ra
Ac
Elementomayoritario
Elementotraza
Esencialidaddiscutida

Biomoleculas





























Contenido Biomolecular del cuerpo humano


Las biomoléculas son las moléculas constituyentes de los seres vivos. Los cuatro bioelementos más abundantes en los seres vivos son el carbono, hidrógeno, oxígeno y nitrógeno, representando alrededor del 99% de la masa de la mayoría de las células. Estos cuatro elementos son los principales componentes de las biomoléculas debido a que:

  • Permiten la formación de enlaces covalentes entre ellos, compartiendo electrones, debido a su pequeña diferencia de electronegatividad. Estos enlaces son muy estables, la fuerza de enlace es directamente proporcional a las masas de los átomos unidos.
  • Permiten a los átomos de carbono la posibilidad de formar esqueletos tridimensionales –C-C-C- para formar compuestos con número variable de carbonos.

  • Permiten la formación de enlaces múltiples (dobles y triples) entre C y C, C y O, C y N, así como estructuras lineales ramificadas cíclicas, heterocíclicas, etc.

  • Permiten la posibilidad de que con pocos elementos se den una enorme variedad de grupos funcionales (alcoholes, aldehídos, cetonas, ácidos, aminas, etc.) con propiedades químicas y físicas diferentes.

LOS GLÚCIDOS o polisacáridos


Los glúcidos también llamados carbohidratos, son polihidroxialdehídos, polihidroxicetonas o compuestos que por hidrólisis se convierten en los polihidroxi antes nombrados. Un carbohidrato que no es hidrolizable a compuestos más simples se denomina monosacárido. En cambio uno que por hidrólisis da dos moléculas de monosacáridos se llama disacárido, mientras aquel que produce muchas moléculas de monosacáridos por hidrólisis es un polisacárido.
A su vez un monosacárido si contiene un grupo aldehído se le conoce como aldosa; si contiene una función cetona es una cetosa. Según el número de átomos de carbono que contenga se conoce el monosacárido como triosa, tetrosa, pentosa, hexosa y así sucesivamente. Una aldohexosa por ejemplo, es un monosacárido con seis átomos de carbono con una función aldehído, mientras que una cetohexosa es un monosacárido de seis átomos de carbono con un grupo cetónico.
importancia Biológica de los Glúcidos
La podemos resumir en los aspectos siguientes:

1.La glucosa es la biomolécula combustible más importante para la mayor parte de los organismos y es también la unidad estructural básica o precursora de los polisacáridos más abundantes.
2.La celulosa es el componente estructural predominante en los tejidos fibrosos y leñosos de las plantas.
3. El almidón se encuentra en cantidades muy grandes en las plantas, de las que constituye la forma principal de combustible de reserva.
4. Los polisacáridos son componentes importantes de las rígidas paredes celulares de las bacterias y las plantas, así como de las cubiertas celulares blandas de los tejidos animales.
5. Las aldopentosas son componentes importantes de los ácidos nucleicos y varios derivados de las triosas y las heptosas, son intermediarios en el metabolismo de los glúcidos.

martes, 28 de octubre de 2008

LAS PROTEINAS



El nombre proteína proviene de la palabra griega proteios, que significa lo primero. Entre todos los compuestos químicos, las proteínas deben considerarse ciertamente como las más importantes, puesto que son las sustancias de la vida.
Desde un punto de vista químico son polímeros grandes o son poliamidas y los monómeros de los cuales derivan son los ácidos a - aminocarboxílicos (aminoácidos). Una sola molécula de proteína contiene cientos e incluso miles de unidades de aminoácidos, las que pueden ser de unos veinte tipos diferentes. El número de moléculas proteínicas distintas que pueden existir, es casi infinito. Es probable que se necesiten decenas de miles de proteínas diferentes para formar y hacer funcionar un organismo animal; este conjunto de proteínas no es idéntico al que constituye un animal de tipo distinto.


Propiedades de los Aminoácidos

1. Los aminoácidos son sólidos cristalinos no volátiles, que funden con descomposición a temperaturas relativamente altas.
2. Son insolubles en solventes no polares, mientras que son apreciablemente solubles en agua.
3. Sus soluciones acuosas se comportan como soluciones de sustancias de elevado momento dipolar.
4. Las constantes de acidez y basicidad son muy pequeñas para grupos – NH2 y - COOH. La glicina, por ejemplo, tiene Ka = 1,6 x 10-10 y Kb = 2,5 x 10-12, mientras que la mayoría de los ácidos carboxílicos tienen Ka del orden 10-5, y un gran número de aminas alifática un Kb de aproximadamente 10-4. En forma general el Ka medido se refiere a la acidez del ión amonio RNH3+


Importancia Biológica de las proteínas

Su importancia biológica la podemos resumir así:
1. Son las sustancias de la vida, pues constituyen gran parte del cuerpo animal.
2. Se les encuentra en la célula viva.
3. Son la materia principal de la piel, músculos, tendones, nervios, sangre, enzimas, anticuerpos y muchas hormonas.
4. Dirigen la síntesis de los ácidos nucleicos que son los que controlan la herencia.

LOS LÍPIDOS


Los lípidos son biomoléculas que siendo insolubles en el agua, pueden ser extraídas de las células con solventes orgánicos de polaridad baja, tales como el éter y el cloroformo.
Los lípidos abarcan una amplia variedad de tipos estructurales incluyendo los siguientes:
· Ácidos carboxílicos (ácidos grasos)
· Triacilglicéridos (o grasas neutras)
· Fosfolípidos
· Glicolípidos
· Ceras
· Tarpenos
· Esteroides
Sólo una pequeña parte de los lípidos está formada por ácidos carboxílicos libres.
La mayoría de los ácidos carboxílicos en los lípidos se encuentran como ésteres del glicerol, es decir, como triacilglicéridos.
Los triacilglicéridos son los aceites y grasas de origen vegetal o animal, incluyendo sustancias tan comunes como el aceite de maní, el aceite de oliva, el aceite de soya, el aceite de maíz, el aceite de linaza, la mantequilla, la manteca y el sebo. Los triacilglicéridos que son líquidos a temperatura ambiente, generalmente se conocen como aceites; los que son sólidos se conocen como mantecas y sebos.
Como podemos observar, para dar una definición de un lípido tenemos que partir de su estructura.
Desde un punto de vista químico las grasas son esteres carboxílicos que derivan de un solo alcohol, el glicerol, CH2OH - CHOH – CH2OH (1,2, 3-propanotriol) y se conocen como glicéridos. Más específicamente se trata de triacilglicéridos.
CH3 – (CH2)12 - COOH ácido tetradecanoico (ácido mirístico)
CH3 – (CH2)14 - COOH ácido hexadecanoico (ácido palmítico)
CH3 – (CH2)16 - COOH ácido octadecanoico (ácido esteárico)
La hidrólisis de la mantequilla forma pequeñas cantidades de ácidos carboxílicos saturados de número par de átomos de carbono, en el intervalo C4 – C12
Estos son los ácidos butíricos (butanoico), caproico (hexanoico), caprílico (octanoico), capricho (decanoico) y laúrico (dodecanoico). La hidrólisis del aceite de coco también produce ácidos carboxílicos de cadena corta y gran cantidad de ácido laúrico.


Importancia Biológica de los Lípidos


La podemos resumir en los aspectos siguientes:
1. Las grasas son los constituyentes principales de las células almacenadoras de grasas en los animales y vegetales.
2. Constituyen una de las reservas alimenticias importantes del organismo.
3. Se emplean en grandes cantidades como materias primas para muchos procesos industriales, de donde se obtienen en algunos casos alimentos de la dieta diaria. Ejemplos, mantequilla, manteca, aceites, etc., además de otros productos de uso cotidiano jabón, aceites secantes, detergentes, etc.

LOS ÁCIDOS NUCLEICOS


Los ácidos nucleicos son polímeros que existen en el núcleo de las células. Toda célula viva contiene ácidos nucleicos, como también las células bacterianas que no contienen núcleos y en los virus que no tienen células. Estos ácidos tienen primordial importancia porque determinan la síntesis de la proteína y el factor genético, las características hereditarias de todos los organismos vivos.
La unidad de repetición (monómero) de los ácidos nucleicos se compone de tres partes de ácido fosfórico, una base que contiene nitrógeno y una porción de azúcar. Este monómero se llama nucleótido.
El azúcar es o bien ribosa o desoxirribosa, y la base es una de las cinco bases principales, citosina, adenina, timina, guanina, uracilo.
Un ácido nucleico que contiene ribosa se llama ácido ribonucleico (RNA) mientras que uno que posee desoxirribosa se denomina ácido desoxirribonucleico (DNA). El DNA fue descubierto por Freidrich Miescher en 1869 y sintetizado por Arthur Kornberg en 1967.


USO DE FÓRMULAS LEGALES E ILEGALES


Un fármaco o medicamento es cualquier sustancia que, aplicada interior o exteriormente al cuerpo, puede producir un efecto curativo. Los medicamentos en general son inofensivos, mientras que otros producen dependencia si son mal usados e inclusive la muerte. De allí que
existan los fármacos legales y los fármacos ilegales.
Los fármacos se expenden en las farmacias sin prescripción facultativa (aspirina, atamel, amoxal, icadén, voltarén, vapesin, etc.) mientras que otros que pueden inducir dependencia o daños si no son bien administrados, se venden mediante prescripción médica. Entre estos últimos tenemos los psicotrópicos (largactil, sinogán, ritalín, ativán, rohpinol, valium, etc.) y anestésicos (cifarcaína, lidocaina, xylocaina, pentotalsódico, morfina, etc.).

IMPACTO DE LA QUÍMICA EN LA PREPARACIÓN DE NUEVA BIOTECNOLOGÍA



La Química influye en nuestra vida de muy diversas formas. Cuando una persona (o animal) está enferma, el médico (o el veterinario) le prescribe ciertos medicamentos que han sido descubiertos por los químicos.
Por otra parte, investigaciones químicas han permitido descubrir fibras, plásticos y cauchos sintéticos como los que se usan en los neumáticos y en otras partes de los automóviles y maquinarias. En los laboratorios químicos se han desarrollado fertilizantes sintéticos que incrementan la producción de alimentos de los terrenos cultivados.
La Química en su constante proceso de experimentación también ha producido y produce hormonas, que ayudan a un mejor funcionamiento del organismo. Entre estas hormonas sintéticas se tienen las píldoras anticonceptivas, hormona sexual masculina y la hormona sexual femenina, insulina, hormonas suprarrenales, hormonas tiroideas, y antitiroideas, hormona contra la esterilidad y muchas otras más. Así mismo, la biotecnología química ha conducido a la preparación de vitaminas, tales como la A, B (y sus diferentes variantes), D, C, E y K y el ácido desoxirribonucleico. En conclusión, la Química ha intervenido en la preparación de casi todos los productos imaginables.

CONCLUSIONES

Los polímeros han originado un impacto social y ambiental que ha generado aspectos positivos y en su gran mayoría negativos, ya que la eliminación de polímeros contribuye a la acumulación de basuras, las bolsas plásticas pueden causar asfixia si se recubre la cabeza con ellas y no se retira la cabeza a tiempo, entre otros.
Las proteínas, que son los bloques para la construcción de los tejidos animales y vegetales, también los polímeros de conducción natural. Otros polímeros que ocurren naturalmente son la seda, el algodón, la lana y el almidón.
Desde el principio de la década de 1930 los químicos han fabricado polímeros, tales como nylon, dacrón, Orión, plexiglás, hules, sintéticos y bakelita que no ocurren naturalmente.
El peso molecular de los polímeros puede ser por promedio de números y promedio de peso, estos datos pueden dar una medida de la magnitud de la desintegración de los cromosomas (genes), es decir, del perjuicio que sufren por la radiación o por agentes químicos (drogas).
Para que se de el proceso de polimerización se necesita de una pequeña cantidad de un iniciador, entre los que se encuentran los próxidos.

Metabolismo


es el conjunto de reacciones y procesos físico-químicos que ocurren en una célula[.] Estos complejos procesos interrelacionados son la base de la vida a nivel molecular, y permiten las diversas actividades de las células: crecer, reproducirse, mantener sus estructuras, responder a estímulos, etc.
El metabolismo se divide en dos procesos conjugados: catabolismo y anabolismo.

Las reacciones catabólicas liberan energía; un ejemplo es la glucólisis, un proceso de degradación de compuestos como la glucosa, cuya reacción resulta en la liberación de la energía retenida en sus enlaces químicos

Las reacciones anabólicas, utilizan la energía liberada para recomponer enlaces químicos y construir componentes de las células como lo son las proteínas y los ácidos nucleicos. El catabolismo y el anabolismo son procesos acoplados que hacen al metabolismo en conjunto, puesto que cada uno depende del otro.

El metabolismo de un organismo determina qué sustancias encontrará nutritivas y cuáles encontrará tóxicas. Por ejemplo, algunas procariotas utilizan sulfuro de hidrógeno como nutriente, pero este gas es venenoso para los animales. La velocidad del metabolismo, el rango metabólico, también influye en cuánto alimento va a requerir un organismo.

Una característica del metabolismo es la similitud de las rutas metabólicas básicas incluso entre especies muy diferentes. Por ejemplo: la secuencia de pasos químicos en una vía metabólica como el ciclo de Krebs es universal entre células vivientes tan diversas como la bacteria unicelular Escherichia coli y organismos pluricelulares como el elefante. Esta estructura metabólica compartida es muy probablemente el resultado de la alta eficiencia de estas rutas, y de su temprana aparición en la historia evolutiva.

Procesos de metabolismo: Biomoléculas principales


Estructura de un lípido, el triglicérido.
La mayor parte de las estructuras que componen a los animales, plantas y microbios pertenecen a alguno de estos tres tipos de moléculas básicas: aminoácidos, glúcidos y lípidos (también denominados grasas). Como estas moléculas son vitales para la vida, el metabolismo se centra en sintetizar estas moléculas, en la construcción de células y tejidos, o en degradarlas y utilizarlas como recurso energético en la digestión. Muchas biomoléculas pueden interaccionar entre sí para crear polímeros como el ADN (ácido desoxirribonucleico) y las proteínas. Estas macromoléculas son esenciales en los organismos vivos. En la siguiente tabla se muestran los biopolímeros más comunes:

Metabolismo de las proteinas y amino acídos


Aminoácidos y proteínas
Las proteínas están compuestas por los aminoácidos, dispuestos en una cadena lineal y unidos por enlaces peptídico. Las enzimas son proteínas que catalizan las reacciones químicas en el metabolismo. Otras proteínas tienen funciones estructurales o mecánicas, como las proteínas del citoesqueleto que forman un sistema de andamiaje para mantener la forma de la célula. Las proteínas también son partícipes de la comunicación celular, la respuesta inmune, la adhesión celular y el ciclo celular.

Metabolismos de Lipidos


Los lípidos son las biomoléculas que más diversidad presentan. Su función estructural básica es formar parte de las membranas biológicas como una membrana celular, o bien como recurso energético. Los lípidos son definidos normalmente como moléculas hidrófobicas o anfipáticas, que se disuelven en solventes orgánicos como la bencina o el cloroformo. Las grasas son un grupo de compuestos que incluyen ácidos grasos y glicerol; una molécula de glicerol junto a tres ácidos grasos éster dan lugar a una molécula de triglicérido. Se pueden dar variaciones de esta estrucutra básica, que incluyen cadenas laterales como la esfingosina de los esfingolípidos y los grupos hidrofílicos tales como los grupos fosfato en los fosfolípidos. Esteroides como el colesterol son otra clase mayor de lípidos sintetizados en las células.

Metabolismo de carbohidratos


La glucosa puede existir en forma de cadena y de anillo.
Los carbohidratos son aldehídos o cetonas con grupos hidroxilo que pueden existir como cadenas o anillos. Los carbohidratos son las moléculas biológicas más abundantes, y presentan varios papeles en la célula; algunos actúan como moléculas de almacenamiento de energía (almidón y glucógeno) o como componentes estructurales (celulosa en las plantas, quitina en los animales Los carbohidratos básicos son llamados monosacáridos e incluyen galactosa, fructosa, y el más importante la glucosa. Los monosacáridos pueden sintetizarse y formar polisacáridos

Metabolismo de nucleótidos


Los polímeros de ADN (Ácido Desoxirribonucléico) y ARN (Ácido Ribonucléico) son cadenas de nucleótidos. Estas moléculas son críticas para el almacenamiento y uso de la información genética por el proceso de transcripción y biosíntesis de proteínas. Esta información se encuentra protegida por un mecanismo de reparación del ADN y duplicada por un mecanismo de replicación del ADN. Algunos virus tienen un genoma de ARN, por ejemplo el HIV, y utilizan retrotranscripción para crear ADN a partir de su genoma viral de ARN estos virus son denominados retrovirus. El ARN de ribozimas como los ribosomas es similar a las enzimas y puede catabolizar reacciones químicas. Los nucleósidos individuales son sintentizados mediante la unión de bases nitrogenadas con ribosa. Estas bases son anillos heterocíclicos que contienen nitrógeno y, según presenten un anillo o dos, pueden ser clasificadas como pirimidinas o purinas, respectivamente. Los nucleótidos también actúan como coenzimas en reacciones metabólicas de transferencia en grupo.

El metabolismo conlleva un elevado número de reacciones químicas, pero la gran mayoría presenta alguno de los mecanismos de catálisis básicos de reacción de transferencia en grupo. Esta química común permite a las células utilizar una pequeña colección de intermediarios metabólicos para trasladar grupos químicos funcionales entre diferentes reacciones. Estos intermediarios de transferencia de grupos son denominados coenzimas. Cada clase de reacción de grupo es llevada a cabo por una coenzima en particular, que es el sustrato para un grupo de enzimas que lo producen, y un grupo de enzimas que lo consumen. Estas coenzimas son, por ende, continuamente creadas, consumidas y luego recicladas. La coenzima más importante es el adenosín trifosfato (ATP). Este nucleótido es usado para transferir energía química entre distintas reacciones químicas. Sólo hay una pequeña parte de ATP en las células, pero como es continuamente regenerado, el cuerpo humano puede llegar a utilizar su propio peso en ATP por día El ATP actúa como una conexión entre el catabolismo y el anabolismo, con reacciones catabólicas que generan ATP y reacciones anabólicas que lo consumen. También es útil para transportar grupos fosfato en reacciones de fosforilación.

Una vitamina es un compuesto orgánico necesitado en pequeñas cantidades que no puede ser sintetizado en las células. En la nutrición humana, la mayoría de las vitaminas trabajan como coenzimas modificadas; por ejemplo, todas las vitaminas hidrosolubles son fosforiladas o acopladas a nucleótidos cuando son utilizadas por las células La nicotinamida adenina dinucleótido (NAD), un derivado de la vitamina B, es una importante coenzima que actúa como aceptor de protones. Cientos de deshidrogenadas eliminan electrones de sus sustratos y reducen el NAD+ en NADH. Esta forma reducida de coenzima es luego un sustrato para cualquier componente en la célula que necesite reducir su sustrato. El NAD existe en dos formas relacionadas en la célula, NADH y NADPH. El NAD+/NADH es más importante en reacciones catabólicas, mientras que el NADP+/NADPH es principalmente utilizado en reacciones anabólicas.

Minerales y cofactores


Los elementos inorgánicos juegan un rol crítico en el metabolismo; algunos son abundantes (sodio y potasio, por ejemplo), mientras que otros actúan a concentraciones mínimas. Alrededor del 99% de la masa de un mamífero se encuentra compuesta por los elementos carbono, nitrógeno, calcio, sodio, cloro, potasio, hidrógeno, oxígeno y azufre. . Los compuestos orgánicos (proteínas, lípidos y carbohidratos) contienen, en su mayoría, carbono y nitrógeno, mientras que la mayoría del oxígeno y del hidrógeno están presentes en el agua. Los elementos inorgánicos actúan como electrolitos iónicos. Los iones de mayor importancia son sodio, potasio, calcio, magnesio, cloruro y fosfato, y el ion orgánico bicarbonato. El gradiente iónico a lo largo de las membranas de la célula mantienen la presión osmótica y el pH Los iones son también críticos para nervios y músculos ya que el potencial de acción en estos tejidos es producido por el intercambio de electrolitos entre el fluido extracelular y el citosol. Los electrolitos entran y salen de la célula a través de proteínas en la membrana plasmática, denominadas canales iónicos. Por ejemplo, la contracción muscular depende del movimiento del calcio, sodio y potasio a través de los canales iónicos en la membrana y los túbulos T. Los metales de transición se encuentran presentes en el organismo principalmente como zinc y hierro, que son los más abundantes.Estos metales son usados en algunas proteínas como cofactores y son esenciales para la actividad de enzimas como la catalasa y proteínas transportadoras del oxígeno como la hemoglobina.[]Estos cofactores están estrechamente ligados a una proteína; a pesar de que los cofacores de enzimas pueden ser modificados durante la catálisis, siempre tienden a volver al estado original antes de que la catálisis tuviera lugar. Los micronutrientes son captados por los organismos por medio de trasportadores específicos y proteínas de almacenamiento específicas tales como la ferritina o la metalotioneína, mientras no son utilizadas.

Vitamina


Las vitaminas (del latín vita (vida) + el griego αμμονιακός, ammoniakós "producto libio, amoníaco", con el sufijo latino ina "sustancia") son compuestos heterogéneos que no pueden ser sintetizados por el organismo, por lo que éste no puede obtenerlos más que a través de la ingestión directa. Las vitaminas son nutrientes esenciales, imprescindibles para la vida.
Actúan como
coenzimas y grupos prostéticos de las enzimas. Sus requerimientos no son muy altos, pero tanto su defecto como su exceso pueden producir enfermedades (respectivamente, avitaminosis e hipervitaminosis).
Las vitaminas se suelen clasificar según su solubilidad en
agua o en lípidos:
En éste artículo se muestran las principales vitaminas y su descripción.
Hidrosolubles :
Vitamina C o ácido ascórbico (antiescorbútica)
Complejo B
Vitamina B1 o tiamina (antineurítica)
Vitamina B2 o riboflavina
Vitamina B3, vitamina PP o niacina
Vitamina B5 o ácido pantoténico
Vitamina B6 o piridoxina
Vitamina B8, vitamina H o biotina
Vitamina B9, vitamina M o ácido fólico.
Vitamina B12 o cianocobalamina
Vitamina B15* o ácido pangámico
Vitamina B17*, laetril o amigdalina
*No se consideran realmente vitaminas .
Liposolubles:
Vitamina A o retinol (antixeroftalmica)
Vitamina D o colecalciferol (antirraquítica)
Vitamina E o tocoferol (antioxidante)
Vitamina K o naftoquinona (antihemorrágica)
Una
mnemónica para recordar las liposolubles A, D, K, E es "Ha de kaer" O "ADEK".

Funciones
Las vitaminas son moléculas orgánicas cuya ausencia provoca enfermedades llamadas
avitaminosis, como el escorbuto. Puesto que el organismo no es capaz de sintetizarlas debe adquirirlas junto con los alimentos. Una dieta en la que falte alguna de ellas provocará trastornos metabólicos que acabará por provocar enfermedades, e incluso la muerte.
Las vitaminas suelen ser precursoras de las
coenzimas.
Las vitaminas también actúan como sustancias
antioxidantes, que previenen distintos tipos de cáncer. Así por ejemplo la vitamina E, parece que tomada en los alimentos que la contienen, previene del cáncer de próstata.
Actualmente la
vitamina D no se considera de manera especifica una vitamina, sino que se lo puede considerar como hormona.Las vitaminas B15 yB17 no se consideran actualmente vitaminas